Relationship between Nitrogen Dynamics and Key Microbial Nitrogen-Cycling Genes in an Intensive Freshwater Aquaculture Pond

Author:

Yan Yifeng1,Zhou Junbo1,Du Chenghao1,Yang Qian1,Huang Jinhe1,Wang Zhaolei1,Xu Jun2,Zhang Min1

Affiliation:

1. Hubei Provincial Engineering Laboratory for Pond Aquaculture, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China

2. Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China

Abstract

Intensive aquaculture in high-density hybrid snakehead [Channa maculata (♀) × Channa argus (♂)] fishponds can lead to toxic conditions for fish. This study investigated nitrogen migration and transformation in these fishponds during different cultivation periods. Using qPCR technology, we analyzed the abundance variation of nitrogen-cycling microorganisms in water and sediment to reveal the nitrogen metabolism characteristics of hybrid snakehead fishponds. The results showed that fish biomass significantly impacts suspended particulate matter (SPM) flux. At the sediment–water interface, inorganic nitrogen fluxes showed predominant NO3−-N absorption by sediments and NH4+-N and NO2−-N release, especially in later cultivation stages. Sediments were rich in nirS and AMX 16S rRNA genes (ranging from 4.04 × 109 to 1.01 × 1010 and 1.19 × 108 to 2.62 × 108 copies/g, respectively) with nirS-type denitrifiers potentially dominating the denitrification process. Ammonia-oxidizing bacteria (AOB) were found to dominate the ammonia oxidation process over ammonia-oxidizing archaea (AOA) in both water and sediment. Redundancy analysis revealed a positive correlation between SPM flux, Chlorophyll a (Chl-a), and denitrification genes in the water, and between nitrogen-cycling genes and NH4+/NO2− fluxes at the interface. These findings provide a scientific basis for nitrogen control in hybrid snakehead fishponds.

Funder

the National Key Research and Development Program of China

the 2023 Science and Technology Plan of Qingxin District, Qingyuan City, China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3