Antioxidant and Antimelanogenic Activities of Lactobacillus kunkeei NCHBL-003 Isolated from Honeybees

Author:

Lee Yeon-Ji1,Choi Joo-Hee1,Kang Kyung-Ku1,Sung Soo-Eun1,Lee Sijoon1,Sung Minkyoung1,Seo Min-Soo2ORCID,Park Jong-Hwan3

Affiliation:

1. Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea

2. Laboratory of Veterinary Tissue Engineering, College of Veterinary Medicine, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea

3. Laboratory Animal Medicine, College of Veterinary Medicine and the Brain Korea 21 PLUS Project Team, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea

Abstract

Excessive reactive oxygen species production can detrimentally impact skin cell physiology, resulting in cell growth arrest, melanogenesis, and aging. Recent clinical studies have found that lactic acid bacteria have a special effect directly or indirectly on skin organs, but the exact mechanism has not been elucidated. In this study, we investigated the mechanisms underlying the antioxidant protective effect and the inhibitory effect on melanin synthesis of Lactobacillus kunkeei culture supernatant (CSK), isolated from Apis mellifera Linnaeus (the Western honeybee). CSK exhibited notable efficacy in promoting cell migration and wound healing under oxidative stress, surpassing the performance of other strains. CSK pretreatment significantly upregulated the expression of Nrf2/HO-1 (nuclear factor erythroid 2-related factor 2/heme oxygenase-1), a key player in cellular defenses against oxidative stress, relative to the control H2O2-treated cells. The DCF-DA (dichloro-dihydro-fluorescein diacetate) assay results confirmed that CSK’s ability to enhance Nrf2 and HO-1 expression aligns with its robust ability to remove H2O2-induced reactive oxygen species. Furthermore, CSK upregulated MAPK (mitogen-activated protein kinase) phosphorylation, an upstream signal for HO-1 expression, and MAPK inhibitors compromised the wound-healing effect of CSK. Additionally, CSK exhibited inhibitory effects on melanin synthesis, downregulating melanogenesis-related genes in B16F10 cells. Thus, the present study demonstrated that CSK exhibited antioxidant effects by activating the Nrf2/HO-1 pathway through MAPK phosphorylation, thereby restoring cell migration and demonstrating inhibitory effects on melanin production. These findings emphasize the antioxidant and antimelanogenic potential of CSK, suggesting its potential use as a therapeutic agent, promoting wound healing, and as an active ingredient in skin-lightening cosmetics.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3