Plasmodium chabaudi Merozoites Obtained through a Simpler Method Do Not Survive in Classically Activated Macrophages

Author:

Rodrigues Pedro Souto1,Azeredo Milena de Farias1,Almeida Natália de Souza1,de Almeida Gisela Garcia Cabral Galaxe1,Wanderley João Luiz Mendes2,Seabra Sergio Henrique1,DaMatta Renato Augusto1ORCID

Affiliation:

1. Laboratório de Biologia Celular e Tecidual, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes 28013-602, RJ, Brazil

2. Laboratório de Imunoparasitologia, Universidade Federal do Rio de Janeiro, Macaé 27930-560, RJ, Brazil

Abstract

Malaria is caused by apicomplexan parasites of the Plasmodium genus. Plasmodium chabaudi is an excellent animal model for the study of human malaria caused by P. falciparum. Merozoites invade erythrocytes but are also found in other host cells including macrophages from the spleen and liver. Methodologies for obtaining merozoites usually involve treatment with protease inhibitors. However, merozoites obtained in this way may have their enzymatic profile altered and, therefore, are not ideal for cell-interaction assays. We report the obtainment of P. chabaudi merozoites naturally egressed from a synchronous erythrocyte population infected with schizonts forms. Merozoites had their infectivity and ultrastructure analyzed. Interaction assays were performed with mice erythrocytes and classically activated mice peritoneal macrophages, a very well-established classic model. Obtained merozoites were able to kill mice and efficiently infect erythrocytes. Interestingly, a lower merozoite:erythrocyte ratio resulted in a higher percentage of infected erythrocytes. We describe a simpler method for obtaining viable and infective merozoites. Classically activated macrophages killed merozoites, suggesting that these host cells may not serve as reservoirs for these parasites. These findings have implications for our understanding of P. chabaudi merozoite biology and may improve the comprehension of their host–parasite relationship.

Funder

National Council for Scientific and Technological Development

Carlos Chagas Filho Foundation for Research Support in Rio de Janeiro

Coordination for the Improvement of Higher Education Personnel

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3