The First Description of the Microbial Diversity in the Amarillo River (La Rioja, Argentina), a Natural Extreme Environment Where the Whole Microbial Community Paints the Landscape Yellow

Author:

Bernardelli Cecilia Elena1,Colman Deborah1,Donati Edgardo Ruben1ORCID,Urbieta María Sofía1ORCID

Affiliation:

1. Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 50 N 288, Calle, La Plata 1900, Buenos Aires, Argentina

Abstract

The Amarillo River in Famatina, La Rioja, Argentina, is a natural acidic river with distinctive yellow-ochreous iron precipitates along its course. While mining activities have occurred in the area, the river’s natural acidity is influenced by environmental factors beyond mineralogy, where microbial species have a crucial role. Although iron-oxidising bacteria have been identified, a comprehensive analysis of the entire microbial community in this extreme environment has not yet been conducted. In this study, we employ high-throughput sequencing to explore the bacterial and fungal diversity in the Amarillo River and Cueva de Pérez terraces, considered prehistoric analogues of the current river basin. Fe(II)-enrichment cultures mimicking different environmental conditions of the river were also analysed to better understand the roles of prokaryotes and fungi in iron oxidation processes. Additionally, we investigate the ecological relationships between bacteria and fungi using co-occurrence and network analysis. Our findings reveal a diverse bacterial community in the river and terraces, including uncultured species affiliated with Acidimicrobiia, part of an uncharacterised universal microbial acidic diversity. Acidophiles such as Acidithiobacillus ferrivorans, the main iron oxidiser of the system, and Acidiphilium, which is unable to catalyse Fe(II) oxidation but has a great metabolic flexibility,, are part of the core of the microbial community, showing significant involvement in intraspecies interactions. Alicyclobacillus, which is the main Fe(II) oxidiser in the enrichment culture at 30 °C and is detected all over the system, highlights its flexibility towards the iron cycle. The prevalence of key microorganisms in both rivers and terraces implies their enduring contribution to the iron cycle as well as in shaping the iconic yellow landscape of the Amarillo River. In conclusion, this study enhances our understanding of microbial involvement in iron mineral precipitation, emphasising the collaborative efforts of bacteria and fungi as fundamental geological agents in the Amarillo River.

Funder

ANPCyT

CONICET

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3