Dynamic Protein Phosphorylation in Streptococcus pyogenes during Growth, Stationary Phase, and Starvation

Author:

Mikkat Stefan1ORCID,Kreutzer Michael2,Patenge Nadja3ORCID

Affiliation:

1. Core Facility Proteome Analysis, Rostock University Medical Center, 18057 Rostock, Germany

2. Medical Research Center, Rostock University Medical Center, 18057 Rostock, Germany

3. Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center, 18057 Rostock, Germany

Abstract

Phosphorylation of proteins at serine, threonine, and tyrosine residues plays an important role in physiological processes of bacteria, such as cell cycle, metabolism, virulence, dormancy, and stationary phase functions. Little is known about the targets and dynamics of protein phosphorylation in Streptococcus pyogenes, which possesses a single known transmembrane serine/threonine kinase belonging to the class of PASTA kinases. A proteomics and phosphoproteomics workflow was performed with S. pyogenes serotype M49 under different growth conditions, stationary phase, and starvation. The quantitative analysis of dynamic phosphorylation, which included a subset of 463 out of 815 identified phosphorylation sites, revealed two main types of phosphorylation events. A small group of phosphorylation events occurred almost exclusively at threonine residues of proteins related to the cell cycle and was enhanced in growing cells. The majority of phosphorylation events occurred during stationary phase or starvation, preferentially at serine residues. PASTA kinase-dependent cell cycle regulation processes found in related bacteria are conserved in S. pyogenes. Increased protein phosphorylation during the stationary phase has also been described for some other bacteria, and could therefore be a general feature in the physiology of bacteria, whose functions and the kinases involved need to be elucidated in further analyses.

Publisher

MDPI AG

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3