Exploring the Microbial Mosaic: Insights into Composition, Diversity, and Environmental Drivers in the Pearl River Estuary Sediments

Author:

Zvi-Kedem Tal1,Lalzar Maya2ORCID,Sun Jing34,Li Jiying34ORCID,Tchernov Dan1,Meron Dalit1

Affiliation:

1. Morris Kahn Marine Research Station, Faculty of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel

2. Bioinformatics Services Unit, University of Haifa, Haifa 3498838, Israel

3. Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China

4. Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Zhuhai 519080, China

Abstract

River estuaries are dynamic and complex ecosystems influenced by various natural processes, including climatic fluctuations and anthropogenic activities. The Pearl River Estuary (PRE), one of the largest in China, receives significant land-based pollutants due to its proximity to densely populated areas and urban development. This study aimed to characterize the composition, diversity, and distribution patterns of sediment microbial communities (bacteria, archaea, and eukaryotes) and investigated the connection with environmental parameters within the PRE and adjacent shelf. Physicochemical conditions, such as oxygen levels, nitrogen compounds, and carbon content, were analyzed. The study found that the microbial community structure was mainly influenced by site location and core depth, which explained approximately 67% of the variation in each kingdom. Sites and core depths varied in sediment properties such as organic matter content and redox conditions, leading to distinct microbial groups associated with specific chemical properties of the sediment, notably C/N ratio and NH4+ concentration. Despite these differences, certain dominant taxonomic groups were consistently present across all sites: Gammaproteobacteria in bacteria; Bathyarchaeia, Nitrososphaeria, and Thermoplasmata in archaea; and SAR in Eukaryota. The community diversity index was the highest in the bacteria kingdom, while the lowest values were observed at site P03 across the three kingdoms and were significantly different from all other sites. Overall, this study highlights the effect of depth, core depth, and chemical properties on sediment microbiota composition. The sensitivity and dynamism of the microbiota, along with the possibility of identifying specific markers for changes in environmental conditions, is valuable for managing and preserving the health of estuaries and coastal ecosystems.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3