Harnessing the Biocontrol Potential of Bradyrhizobium japonicum FCBP-SB-406 to Manage Charcoal Rot of Soybean with Increased Yield Response for the Development of Sustainable Agriculture

Author:

Khalid Umar1,Aftab Zill-e-Huma1,Anjum Tehmina1,Bokhari Najat A.2,Akram Waheed1ORCID,Anwar Waheed1ORCID

Affiliation:

1. Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan

2. Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11495, Saudi Arabia

Abstract

Plant growth-promoting bacteria (PGPRs) have the potential to act as biofertilizers and biopesticides. This study was planned to explore indigenously isolated PGPRs as a potential candidate to control charcoal rot that affects various crops including soybean. Among the four different tested species of PGPRs, Bradyrhizobium japonicum (FCBP-SB-406) showed significant potential to enhance growth and control soil borne pathogens such as Macrophomina phaseolina. Bacillus subtilis (FCBP-SB-324) followed next. Bradyrhizobium japonicum (FCBP-SB-406) reduced disease severity up to 81.25% in comparison to the control. The strain showed a strong fertilizing effect as a highly significant increase in biomass and other agronomic parameters was recorded in plants grown in its presence. The same was supported by the Pearson’s correlation and principal component analysis. A decrease in disease incidence and severity may be due to the induced resistance imparted by the bacterium. This resulted in significant increments in quantities of defense enzymes, including catalase, peroxidase (PO), polyphenol oxidase (PPO), phenylalanine ammonia lyase (PAL) and superoxide dismutase (SOD). A significant production of proteases, catalases and hydrogen cyanide by B. japonicum (FCBP-SB-406) can also be associated to mycoparasitism. The establishment of PGPRs in treated soils also showed positive effects on soil health. Total metabolite profiling of treated plants in comparison to the control showed the upregulation of many flavonoids, isoflavonoids and amino acids. Many of these compounds have been well reported with antimicrobial activities. Bradyrhizobium japonicum (FCBP-SB-406) can be employed for the production of a potential formulation to support sustainable agriculture by reducing the input of synthetic pesticides and fertilizers.

Funder

Research Supporting Project

King Saud University, Riyadh, Saudi Arabia

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Reference44 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3