The Impact of Rhizospheric and Endophytic Bacteria on the Germination of Carajasia cangae: A Threatened Rubiaceae of the Amazon Cangas

Author:

Boanares Daniela1ORCID,Cardoso Aline Figueiredo1ORCID,Escobar Diego Fernando Escobar1,Costa Keila Jamille Alves1,Bitencourt José Augusto1ORCID,Costa Paulo Henrique O.1,Ramos Silvio1ORCID,Gastauer Markus1,Caldeira Cecilio Frois1ORCID

Affiliation:

1. Instituto Tecnológico Vale, Belém 66055-090, PA, Brazil

Abstract

Carajasia cangae (Rubiaceae) is a narrow endemic species from the canga ecosystems of the Carajás National Forest that is facing extinction due to a limited range and habitat disturbance from hydroclimatological changes and mining activities. This study examines the influence of rhizospheric and endophytic bacteria on C. cangae seed germination to support conservation efforts. Soil samples, both rhizospheric and non-rhizospheric, as well as plant root tissues, were collected. Bacteria from these samples were subsequently isolated, cultured, and identified. DNA sequencing revealed the presence of 16 isolates (9 rhizospheric and 7 endophytic), representing 19 genera and 6 phyla: Proteobacteria, Actinobacteria, Acidobacteria, Firmicutes, Bacteroidetes, and Chloroflexi. The endophytic isolates of Bacillus and the rhizospheric isolates of Planococcus and Lysinibacillus reduced the median germination time and initiation time, while the rhizospheric isolates Serratia and Comamonas increased the germination time and decreased the germination percentage in comparison to the control sample. These findings emphasize the crucial role of endophytic bacteria in the germination of C. cangae and highlight isolates that could have beneficial effects in the following stages of plant growth. Understanding the impact of endophytic and rhizospheric bacterial isolates on seed germination can enhance conservation efforts by shortening the germination period of this species and thereby improving seedling production. Additionally, this knowledge will pave the way for future research on the role of bacteria in the establishment of C. cangae.

Funder

Instituto Tecnológico Vale

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3