Spatial and Seasonal Changes in Microbial Community of Hynobius amjiensis Breeding Pools in a Sphagnum-Dominated Peatland

Author:

Yu Meng-Jie1ORCID,Wang Xian-Ting2,Wang Ting1ORCID,Huang Wei-Quan1,Lang Ze-Dong2,Wang Jia-Peng34,Wu Yu-Huan1ORCID

Affiliation:

1. College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China

2. Zhejiang Hynobius amjiensis Nature Reserve Management Office, Huzhou 313300, China

3. School of Information Science and Technology, Hangzhou Normal University, Hangzhou 311121, China

4. Zhejiang Provincial Key Laboratory of Urban Wetlands and Regional Change, Hangzhou 311121, China

Abstract

Peatlands deliver a variety of beneficial ecosystem services, particularly serving as habitats for a diverse array of species. Hynobius amjiensis is a critically endangered amphibian initially discovered in a Sphagnum-dominated peatland in Anji, China. The unique habitat requirements of H. amjiensis make it highly vulnerable to environmental changes. Here, we investigated the different breeding pools of H. amjiensis in the Sphagnum-dominated peatland (the type locality) for a one-year period to evaluate the interactions among the egg sacs present, water quality, and microbial communities (16S and 18S rRNA gene amplicon). The numbers of egg sacs were higher in the breeding pools located at the marginal area than those at the core area of the peatland. Similarly, the α-diversity of bacteria, fungi, and protists were lower in the core region compared to those at the edge of the peatland, perhaps due to water eutrophication. The microbial communities and water quality differed significantly among breeding pools and sampling months. The simpler microbial networks of the breeding pools in the core wetland may impact the numbers and health of the egg sacs. This study contributes to a better understanding of the effect of water quality on biodiversity in peatlands, and it can also guide regulations for wetland conservation and the protection of endangered species.

Funder

National Natural Science Foundation of China

Zhejiang Hynobius amjiensis National Nature Reserve Management Office

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3