Intermediate Disturbances Enhance Microbial Enzyme Activities in Soil Ecosystems

Author:

Kang Hojeong1,Kim Sunghyun2,Song Keunyea3,Kwon Min-Jung4,Lee Jaehyun1

Affiliation:

1. School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea

2. Smithsonian Environmental Research Center, Edgewater, MD 21037, USA

3. Department of Ecology, State of Washington, Lacey, WA 98504, USA

4. Institute of Soil Science, Universität Hamburg, 20146 Hamburg, Germany

Abstract

The Intermediate Disturbance Hypothesis (IDH) posits that maximal plant biodiversity is attained in environments characterized by moderate ecological disturbances. Although the applicability of the IDH to microbial diversity has been explored in a limited number of studies, there is a notable absence of experimental reports on whether soil microbial ‘activity’ demonstrates a similar response to the frequency or intensity of environmental disturbances. In this investigation, we conducted five distinct experiments employing soils or wetland sediments exposed to varying intensities or frequencies of disturbances, with a specific emphasis on disturbances associated with human activity, such as chemical contamination, hydrologic changes, and forest thinning. Specifically, we examined the effects of bactericide and heavy metal contamination, long-term drainage, tidal flow, and thinning management on microbial enzyme activities in soils. Our findings revealed that microbial enzyme activities were highest at intermediate disturbance levels. Despite the diversity in experiment conditions, each trial consistently demonstrated analogous patterns, suggesting the robustness of the IDH in elucidating microbial activities alongside diversity in soils. These outcomes bear significant implications for ecological restoration and management, as intermediate disturbance may expedite organic matter decomposition and nutrient cycles, crucial for sustaining ecosystem services in soils.

Funder

MINISTRY OF ENVIRONMENT

NRF

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3