The Post-Transcriptional Regulatory Protein CsrA Amplifies Its Targetome through Direct Interactions with Stress-Response Regulatory Hubs: The EvgA and AcnA Cases

Author:

Rojano-Nisimura Alejandra Matsuri1,Grismore Kobe B.2,Ruzek Josie S.2,Avila Jacqueline L.2,Contreras Lydia M.12ORCID

Affiliation:

1. Department of Molecular Biosciences, The University of Texas at Austin, 100 East 24th St. Stop A5000, Austin, TX 78712, USA

2. McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, TX 78712, USA

Abstract

Global rewiring of bacterial gene expressions in response to environmental cues is mediated by regulatory proteins such as the CsrA global regulator from E. coli. Several direct mRNA and sRNA targets of this protein have been identified; however, high-throughput studies suggest an expanded RNA targetome for this protein. In this work, we demonstrate that CsrA can extend its network by directly binding and regulating the evgA and acnA transcripts, encoding for regulatory proteins. CsrA represses EvgA and AcnA expression and disrupting the CsrA binding sites of evgA and acnA, results in broader gene expression changes to stress response networks. Specifically, altering CsrA-evgA binding impacts the genes related to acidic stress adaptation, and disrupting the CsrA-acnA interaction affects the genes involved in metal-induced oxidative stress responses. We show that these interactions are biologically relevant, as evidenced by the improved tolerance of evgA and acnA genomic mutants depleted of CsrA binding sites when challenged with acid and metal ions, respectively. We conclude that EvgA and AcnA are intermediate regulatory hubs through which CsrA can expand its regulatory role. The indirect CsrA regulation of gene networks coordinated by EvgA and AcnA likely contributes to optimizing cellular resources to promote exponential growth in the absence of stress.

Funder

Welch Foundation

National Institutes of Health

National Science Foundation

Fulbright Garcia-Robles Fellowship

University of Texas at Austin Continuing Graduate Fellowship

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3