Nitrogen Removal Characteristics and Constraints of an Alphaproteobacteria with Potential for High Nitrogen Content Heterotrophic Nitrification-Aerobic Denitrification

Author:

Zhang Nan,Zhang Yiting,Bohu Tsing,Wu ShanghuaORCID,Bai ZhihuiORCID,Zhuang XuliangORCID

Abstract

The discovery of heterotrophic nitrification-aerobic denitrification (HN-AD) microorganisms has opened a new window for wastewater treatment. The underlying mechanism of HN-AD, however, is not fully understood because of the phylogenetic diversity of HN-AD microbes. The isolation and characterization of new HN-AD microorganisms are encouraging for furthering the understanding of this process. In this study, we found an Alphaproteobacteria isolate W30 from a historically polluted river in China through an HN-AD microbes screening process, which we identified as Pannonibacter sp. A potential HN-AD pathway for W30 was proposed based on N conversion analyses and the successful amplification of the entire denitrification gene series. The isolate exhibited high efficiency of aerobic inorganic nitrogen transformation, which accounted for 97.11% of NH4+-N, 100% of NO3−-N, and 99.98% of NO2−-N removal with a maximum linear rate of 10.21 mg/L/h, 10.46 mg/L/h, and 10.77 mg/L/h, respectively. Assimilation rather than denitrification was the main mechanism for the environmental nitrogen depletion mediated by W30. The effect of environmental constraints on aerobic NO3−-N removal were characterized, following a membrane bioreactor effluent test under an oxic condition. Compared to known Alphaproteobacterial HN-AD microbes, we showed that Pannonibacter sp. W30 could deplete nitrogen with no NO2−-N or NO3−-N accumulation in the HN-AD process. Therefore, the application of Pannonibacter sp. W30 has the potential for developing a felicitous HN-AD technology to treat N-laden wastewater at the full-scale level.

Funder

the Major Science and Technology Program for Water Pollution Control and Treatment of China

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3