Exploring the Promise of Endophytic Fungi: A Review of Novel Antimicrobial Compounds

Author:

Caruso Daniel J.,Palombo Enzo A.ORCID,Moulton Simon E.,Zaferanloo Bita

Abstract

Over the last few decades, many of the existing drugs used to treat infectious diseases have become increasingly ineffective due to the global emergence of antimicrobial resistance (AMR). As such, there is a constant demand to find new, effective compounds that could help to alleviate some of this pressure. Endophytic fungi have captured the attention of many researchers in this field, as they have displayed a vast ability to produce novel bioactive compounds, many of which possess wide-ranging antimicrobial activities. However, while highly promising, research in this area is still in its infancy. Endophytes inhabit the healthy tissues of plants asymptomatically, resulting in a mutualistic symbiosis in which the endophytes produce a plethora of bioactive compounds that support the fitness of the host plant. These compounds display great chemical diversity, representing structural groups, such as aliphatic compounds, alkaloids, peptides, phenolics, polyketides and terpenoids. In this review, the significant antimicrobial potential of endophytic fungi is detailed, highlighting their ability to produce novel and diverse antimicrobial compounds active against human, plant and marine pathogens. In doing so, it also highlights the significant contributions that endophytic fungi can make in our battle against AMR, thus providing the motivation to increase efforts in the search for new and effective antimicrobial drugs.

Funder

Swinburne University of Technology

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Reference115 articles.

1. Coronavirus (COVID-19) Dashboard

2. Infectious diseases and agriculture;Grace,2019

3. Prevalence and Antimicrobial Resistance of Virulent Listeria monocytogenes and Cronobacter sakazakii in Dairy Cattle, the Environment, and Dried Milk with the In Vitro Application of Natural Alternative Control

4. Pharmaceuticals: Natural products and natural product models;Singh,2012

5. Natural products as anticancer agents;Kingston,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3