Assessment of Indoor Air Quality of Four Primary Health Care Centers in Qatar

Author:

Abdelrahman Hana,Abu-Rub LubnaORCID,Al Mana HassanORCID,Alhorr Yousef,Al Thani Asmaa,Qotba HamdaORCID,Yassine Hadi M.ORCID,Eltai Nahla O.

Abstract

Airborne bacteria pose a potential risk to human health upon inhalation in the indoor environments of health care facilities. Airborne bacteria may originate from various sources, including patients, workers, and daily visitors. Hence, this study investigates the quantity, size, and identification of airborne bacteria indoors and outdoors of four Primary Health Care Centers (PHCC) in Doha, Qatar. Air samples were collected from the lobby, triage room, and outside environment of the centers, including, Qatar University (QU-HC), Al-Rayyan (AR-HC), Umm-Ghuwailina (UG-HC), and Old Airport (OA-HC) between August 2020 and March 2021, throughout both the hot and the cold seasons. Samples were collected using an Anderson six-stage cascade impactor. The mean of the total colony-forming units was calculated per cubic meter of air (CFU/m3). QU-HC had the lowest mean of total bacterial count compared with other centers in the indoor and outdoor areas with 100.4 and 99.6 CFU/m3, respectively. In contrast, AR-HC had the highest level, with 459 CFU/m3 indoors, while OA-HC recorded the highest bacterial concentration of the outdoor areas with a total mean 377 CFU/m3. In addition, 16S rRNA sequencing was performed for genera identification. Staphylococcus, Acinetobacter, Bacillus, and Pseudomonas were the four most frequently identified bacterial genera in this study. The abundance of airborne bacteria in the four health centers was higher in the cold season. About 46% of the total airborne bacterial count for three PHCC centers exceeded 300 CFU/m3, making them uncompliant with the World Health Organization’s (WHO) recommendation for indoor settings. Consequently, an IAQ standards should be shaped to establish a baseline for measuring air pollution in Qatar. Additionally, it is crucial to understand seasonal fluctuations better so that hospitals can avoid rising and spreading infection peaks.

Funder

Primary Health Care

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Reference54 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3