Epidendrumradicans Fungal Community during Ex Situ Germination and Isolation of Germination-Enhancing Fungi

Author:

Yao NaORCID,Wang Tao,Cao XiaoluORCID

Abstract

Orchids exhibit varying specificities to fungi in different microbial environments. This pilot study investigated the preference of fungal recruitment during symbiotic germination of Epidendrum radicans Pav. ex Lindl. Two different orchid substrates were used for ex situ seed baiting: pine bark and rotten oak leaf, with Basidiomycota and Ascomycota as the respective dominant groups. Both substrates promoted seed germination, with a higher protocorm formation rate on pine bark (65.75%). High-throughput sequencing characterized the fungal communities of germinated protocorms. Basidiomycota was the dominant group in protocorms that symbiotically germinated on both substrates. The family-level community structures of endophytic fungi in protocorms that symbiotically germinated on both substrates were close to those of protocorms that germinated in vitro on MS1 medium. For protocorms, the dominant fungal groups recruited from substrates differed at the genus level; from pine bark, they were genera belonging to unclassified Sebacinales (41.34%), Thanatephorus (14.48%) and Fusarium (7.35%), while, from rotten oak leaf, they were Rhizoctonia (49.46%), Clitopilus (34.61%), and Oliveonia (7.96%). Four fungal isolates were successfully obtained and identified as belonging to the family Tulasnellaceae, genera Ceratobasidium and Peniophora, which could promote seed germination to the seedling stage. The data indicate that endophytic fungi for E. radicans germination on two different substrates are affected at the genus level by the substrate, with a degree of specificity at the family level.

Funder

Fundamental Research Funds for the Central Non-profit Research of Chinese Academy of Forestry

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3