The microRNA Cargo of Human Vaginal Extracellular Vesicles Differentiates Parasitic and Pathobiont Infections from Colonization by Homeostatic Bacteria

Author:

Cezar-de-Mello Paula Fernandes Tavares1ORCID,Ryan Stanthia1,Fichorova Raina N.1ORCID

Affiliation:

1. Laboratory of Genital Tract Biology, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA

Abstract

The disturbed vaginal microbiome defined as bacterial vaginosis (BV) and the parasitic infection by Trichomonas vaginalis (TV), the most common non-viral sexually transmitted pathogen, have well-established adverse effects on reproductive outcomes and susceptibility to infection and cancer. Molecular mechanisms underlying these associations and the failure of antibiotic therapy to mitigate adverse consequences are not fully elucidated. In an in vitro human vaginal colonization model, we tested the hypothesis that responses to TV and/or BV-bacteria will disrupt the micro(mi)RNA cargo of extracellular vesicles (EV) with the potential to modify pathways associated with reproductive function, cancer, and infection. miRNAs were quantified by HTG EdgeSeq. MiRNA differential expression (DE) was established in response to TV, the BV signature pathobiont Prevotella bivia and a homeostatic Lactobacillus crispatus with adjusted p < 0.05 using R. Validated gene targets, pathways, protein-protein interaction networks, and hub genes were identified by miRWalk, STRING, Cytoscape, and CytoHubba. In contrast to L. crispatus, TV and the BV pathobiont dysregulated a massive number of EV-miRNAs, over 50% shared by both pathogens. Corresponding target pathways, protein interaction clusters and top hub genes were related to cancer, infectious disease, circadian rhythm, steroid hormone signaling, pregnancy, and reproductive tissue terms. These data support the emerging concept that bacteria and parasitic eukaryotes disturbing the human vaginal microbiome may impact reproductive health through EV-miRNA dysregulation.

Funder

Eunice Kennedy Shriver National Institute of Child Health and Human Development

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3