Antibiotic-Resistant Desulfovibrio Produces H2S from Supplements for Animal Farming

Author:

Karnachuk Olga V.1ORCID,Beletsky Alexey V.2,Rakitin Andrey L.2ORCID,Ikkert Olga P.1,Avakyan Marat R.1,Zyusman Viacheslav S.1,Napilov Andrei1,Mardanov Andrey V.2ORCID,Ravin Nikolai V.2ORCID

Affiliation:

1. Laboratory of Biochemistry and Molecular Biology, Tomsk State University, 634050 Tomsk, Russia

2. Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prosp, Bld. 33-2, 119071 Moscow, Russia

Abstract

Sulphate-reducing bacteria, primarily Desulfovibrio, are responsible for the active generation of H2S in swine production waste. The model species for sulphate reduction studies, Desulfovibrio vulgaris strain L2, was previously isolated from swine manure characterized by high rates of dissimilatory sulphate reduction. The source of electron acceptors in low-sulphate swine waste for the high rate of H2S formation remains uncertain. Here, we demonstrate the ability of the L2 strain to use common animal farming supplements including L-lysine-sulphate, gypsum and gypsum plasterboards as electron acceptors for H2S production. Genome sequencing of strain L2 revealed the presence of two megaplasmids and predicted resistance to various antimicrobials and mercury, which was confirmed in physiological experiments. Most of antibiotic resistance genes (ARG) are carried by two class 1 integrons located on the chromosome and on the plasmid pDsulf-L2-2. These ARGs, predicted to confer resistance to beta-lactams, aminoglycosides, lincosamides, sulphonamides, chloramphenicol and tetracycline, were probably laterally acquired from various Gammaproteobacteria and Firmicutes. Resistance to mercury is likely enabled by two mer operons also located on the chromosome and on pDsulf-L2-2 and acquired via horizontal gene transfer. The second megaplasmid, pDsulf-L2-1, encoded nitrogenase, catalase and type III secretion system suggesting close contact of the strain with intestinal cells in the swine gut. The location of ARGs on mobile elements allows us to consider D. vulgaris strain L2 as a possible vector transferring antimicrobials resistance determinants between the gut microbiote and microbial communities in environmental biotopes.

Funder

Ministry of Science

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3