Epidemiological Characterisation of blaNDM-Positive Enterobacterales from Food-Producing Animal Farms in Southwest China

Author:

Wen Renqiao12,Wei Hongcheng12,Zhang Tiejun12,Ma Peng12,Wang Qin12,Li Chao12ORCID,Li Zhonghan1,Lei Changwei12ORCID,Wang Hongning12

Affiliation:

1. Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610017, China

2. Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu 610064, China

Abstract

Carbapenems are atypical β-lactam antibiotics with a broade antibacterial spectrum and strong antibacterial activity; however, the emergence and spread of carbapenemases have led to a decline in their effectiveness. New Delhi metallo-β-lactamase (NDM) is an important carbapenemase that has attracted widespread attention and poses a major threat to public health. To investigate the epidemiological characteristics of blaNDM in swine and chicken farms in southwestern China, we isolated 102 blaNDM-positive Enterobacterales strains from 18 farms in Sichuan and Yunnan provinces in 2021, with Escherichia coli and Klebsiella spp. being the main reservoirs of blaNDM, variant blaNDM-5 being the most prevalent, and all strains being multi-drug resistant. Whole-genome sequencing analysis of 102 blaNDM-positive Enterobacterales strains revealed that blaNDM had spread primarily through its carriers on the same farm and among the 18 farms in this study. A high degree of genetic similarity between animal-derived blaNDM-positive Escherichia coli strains and human-derived strains was also identified, suggesting a potential mutual transmission between them. Nanopore sequencing results indicated that blaNDM is predominantly present on the IncX3 plasmid, that an insertion sequence might be important for recombination in the blaNDM genetic environment, and that most of the plasmids carrying blaNDM are transferable. Collectively, our results enrich the current epidemiological information regarding blaNDM in pig and chicken farms in Southwest China, revealing its transmission pattern, as well as the potential risk of transmission to humans, which could help to better understand and control the spread of blaNDM.

Funder

National Natural Science Foundation of China

National System for Layer Production Technology

Natural Science Foundation of Sichuan Province

Central Government Guiding Local Science and Technology Development

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3