Loss of Biliverdin Reductase Increases Oxidative Stress in the Cyanobacterium Synechococcus sp. PCC 7002

Author:

Schluchter Wendy M.1,Babin Courtney H.1ORCID,Liu Xindi1,Bieller Amori1,Shen Gaozhong2ORCID,Alvey Richard M.23ORCID,Bryant Donald A.2ORCID

Affiliation:

1. Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA

2. Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA

3. Biology Department, Bloomington, Illinois Wesleyan University, Bloomington, IL 61702, USA

Abstract

Oxygenic photosynthesis requires metal-rich cofactors and electron-transfer components that can produce reactive oxygen species (ROS) that are highly toxic to cyanobacterial cells. Biliverdin reductase (BvdR) reduces biliverdin IXα to bilirubin, which is a potent scavenger of radicals and ROS. The enzyme is widespread in mammals but is also found in many cyanobacteria. We show that a previously described bvdR mutant of Synechocystis sp. PCC 6803 contained a secondary deletion mutation in the cpcB gene. The bvdR gene from Synechococcus sp. PCC 7002 was expressed in Escherichia coli, and recombinant BvdR was purified and shown to reduce biliverdin to bilirubin. The bvdR gene was successfully inactivated in Synechococcus sp. PCC 7002, a strain that is naturally much more tolerant of high light and ROS than Synechocystis sp. PCC 6803. The bvdR mutant strain, BR2, had lower total phycobiliprotein and chlorophyll levels than wild-type cells. As determined using whole-cell fluorescence at 77 K, the photosystem I levels were also lower than those in wild-type cells. The BR2 mutant had significantly higher ROS levels compared to wild-type cells after exposure to high light for 30 min. Together, these results suggest that bilirubin plays an important role as a scavenger for ROS in Synechococcus sp. PCC 7002. The oxidation of bilirubin by ROS could convert bilirubin to biliverdin IXα, and thus BvdR might be important for regenerating bilirubin. These results further suggest that BvdR is a key component of a scavenging cycle by which cyanobacteria protect themselves from the toxic ROS byproducts generated during oxygenic photosynthesis.

Funder

National Science Foundation

National Institutes of Health

REU award from the National Science Foundation

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3