Combining Flow Cytometry and Metagenomics Improves Recovery of Metagenome-Assembled Genomes in a Cell Culture from Activated Sludge

Author:

Abdulkadir Nafi’uORCID,Saraiva Joao PedroORCID,Schattenberg Florian,Toscan Rodolfo Brizola,Borim Correa Felipe,Harms Hauke,Müller SusannORCID,da Rocha Ulisses NunesORCID

Abstract

The recovery of metagenome-assembled genomes is biased towards the most abundant species in a given community. To improve the identification of species, even if only dominant species are recovered, we investigated the integration of flow cytometry cell sorting with bioinformatics tools to recover metagenome-assembled genomes. We used a cell culture of a wastewater microbial community as our model system. Cells were separated based on fluorescence signals via flow cytometry cell sorting into sub-communities: dominant gates, low abundant gates, and outer gates into subsets of the original community. Metagenome sequencing was performed for all groups. The unsorted community was used as control. We recovered a total of 24 metagenome-assembled genomes (MAGs) representing 11 species-level genome operational taxonomic units (gOTUs). In addition, 57 ribosomal operational taxonomic units (rOTUs) affiliated with 29 taxa at species level were reconstructed from metagenomic libraries. Our approach suggests a two-fold increase in the resolution when comparing sorted and unsorted communities. Our results also indicate that species abundance is one determinant of genome recovery from metagenomes as we can recover taxa in the sorted libraries that are not present in the unsorted community. In conclusion, a combination of cell sorting and metagenomics allows the recovery of MAGs undetected without cell sorting.

Funder

Helmholtz Young Investigator

Deutsche Forschungsgemeinschaft

Petroleum Technology Development Fund

German Academic Exchange Service

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3