Antifungal Activity of Cell-Free Filtrate of Probiotic Bacteria Lactobacillus rhamnosus ATCC-7469 against Fungal Strains Isolated from a Historical Manuscript

Author:

Abdel-Nasser Mahmoud1,Abdel-Maksoud Gomaa2,Eid Ahmed M.3ORCID,Hassan Saad El-Din3ORCID,Abdel-Nasser Aya4,Alharbi Maha5,Elkelish Amr67ORCID,Fouda Amr3ORCID

Affiliation:

1. Department of Manuscripts Conservation, Al-Azhar Al-Sharif Library, Cairo 11511, Egypt

2. Conservation Department, Faculty of Archaeology, Cairo University, Giza 12613, Egypt

3. Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt

4. Food Toxicology and Contaminants Department, National Research Centre, Giza 12622, Egypt

5. Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

6. Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 90950, Riyadh 11623, Saudi Arabia

7. Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt

Abstract

Herein, twelve fungal strains were isolated from a deteriorated historical manuscript dated back to the 18th century. The obtained fungal strains were identified, using the traditional method and ITS sequence analysis, as Cladosporium herbarum (two strains), Aspergillus fumigatus (five strains), A. ustus (one strain), A. flavus (two strains), A. niger (one strain), and Penicillium chrysogenum (one strain). The ability of these fungal strains to degrade the main components of the paper was investigated by their activity to secrete extracellular enzymes including cellulase, amylase, gelatinase, and pectinase. The cell-free filtrate (CFF) ability of the probiotic bacterial strain Lactobacillus rhamnosus ATCC-7469 to inhibit fungal growth was investigated. The metabolic profile of CFF was detected by GC-MS analysis, which confirmed the low and high molecular weight of various active chemical compounds. The safe dose to be used for the biocontrol of fungal growth was selected by investigating the biocompatibility of CFF and two normal cell lines, Wi38 (normal lung tissue) and HFB4 (normal human skin melanocyte). Data showed that the CFF has a cytotoxic effect against the two normal cell lines at high concentrations, with IC50 values of 525.2 ± 9.8 and 329.1 ± 4.2 µg mL−1 for Wi38 and HFB4, respectively. The antifungal activity showed that the CFF has promising activity against all fungal strains in a concentration-dependent manner. The highest antifungal activity (100%) was recorded for a concentration of 300 µg mL−1 with a zone of inhibition (ZOI) in the ranges of 21.3 ± 0.6 to 17.7 ± 0.5 mm. At a concentration of 100 µg mL−1, the activity of CFF remained effective against all fungal strains (100%), but its effectiveness decreased to only inhibit the growth of eight strains (66%) out of the total at 50 µg mL−1. In general, probiotic bacterial strains containing CFF are safe and can be considered as a potential option for inhibiting the growth of various fungal strains. It is recommended that they be used in the preservation of degraded historical papers.

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3