Optimization of Fermentation Conditions and Product Identification of a Saponin-Producing Endophytic Fungus

Author:

Chen Qiqi12ORCID,Wang Jingying12ORCID,Gao Yuhang2,Gao Xiujun2,Yan Peisheng12

Affiliation:

1. School of Environment, Harbin Institute of Technology, Harbin 150090, China

2. School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China

Abstract

Background: Some fungal endophytes isolated from P. ginseng may present a new method of obtaining saponins. This experiment aimed to optimize the total saponin yield produced through in vitro fermentation by an endophytic fungus and analyze its saponin species in the fermented extract. Methods: Fermentation protocols were optimized with a uniform design and verified through regression analysis to maximize the total saponin yield. The saponin types under optimal fermentation conditions were then identified and analyzed using Liquid Chromatography–Mass Spectrometry. Results: The Trametes versicolor strain NSJ105 (gene accession number: OR144428) isolated from wild ginseng could produce total saponins. The total saponin yield could be increased more than two-fold through the optimization of fermentation conditions. The concentration of the total saponins achieved by the verified protocol 105-DP was close to the predicted value. The fermentation conditions of the 105-DP protocol were as follows: potato concentration 97.3 mg/mL, glucose concentration 20.6 mg/mL, inoculum volume 2.1%, fermentation broth pH 2.1, fermentation temperature 29.2 °C, and fermentation time 6 d. It was detected and analyzed that the fermented extract of 105-DP contained the ginsenosides Rf and Rb3. Conclusion: The endophytic fungus Trametes versicolor strain NSJ105 has potential application value in saponin production.

Funder

key scientific research and development project of shandong province

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3