Multi-Omics Analysis Demonstrates the Critical Role of Non-Ethanolic Components of Alcoholic Beverages in the Host Microbiome and Metabolome: A Human- and Animal-Based Study

Author:

Sarkar Priyanka12ORCID,Kandimalla Raghuram3,Bhattacharya Anupam1ORCID,Wahengbam Romi4ORCID,Dehingia Madhusmita1ORCID,Kalita Mohan Chandra5,Talukdar Narayan Chandra16,Talukdar Rupjyoti2,Khan Mojibur R.1

Affiliation:

1. Molecular Biology and Microbial Biotechnology Laboratory, Life Science Division, Institute of Advanced Study in Science and Technology (IASST), Department of Science and Technology, Government of India, Paschim Boragaon, Garchuk, Guwahati 781035, Assam, India

2. Wellcome/DBT (Indian Alliance) Lab, Institute of Translational Research, Asian Healthcare Foundation, Asian Institute of Gastroenterology (AIG Hospitals), Hyderabad 500032, Telangana, India

3. Brown Cancer Centre, University of Louisville, Louisville, KY 40202, USA

4. Centre for Infectious Diseases, Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat 785006, Assam, India

5. Department of Biotechnology, Gauhati University, Guwahati 781014, Assam, India

6. Faculty of Science, Assam Down Town University, Panikhaiti, Guwahati 781026, Assam, India

Abstract

It is known that alcoholic beverages alter the human gut microbiome. This study focused on the potential impact of non-ethanolic ingredients in whisky on the gut bacteriome. A pilot study was carried out on 15 whisky drinkers, 5 rice beer drinkers, and 9 non-drinkers to determine the effect of alcoholic beverages on the host microbiome and metabolome. Additionally, a mouse model was used to assess the differential impact of three whisky brands (each with an equal ethanol concentration). The results indicate that the non-ethanolic components have an impact on the gut microbiome, as well as on the metabolites in blood and feces. The amount of Prevotella copri, a typical core Indian gut bacterium, decreased in both the human and mouse groups of whisky type 1, but an increase in abundance of Helicobacteriaceae (p = 0.01) was noticed in both groups. Additionally, the alcohol-treated cohorts had lower levels of short-chain fatty acids (SCFAs), specifically butyric acid, and higher amounts of lipids and stress marker IL1-ß than the untreated groups (p = 0.04–0.01). Furthermore, two compounds, ethanal/acetaldehyde (found in all the whisky samples) and arabitol (unique to whisky type 1), were tested in the mice. Similar to the human subjects, the whisky type 1 treated mouse cohort and the arabitol-treated group showed decreased levels of Prevotella copri (p = 0.01) in their gut. The results showed that non-ethanolic compounds have a significant impact on host gut bacterial diversity and metabolite composition, which has a further vital impact on host health. Our work further emphasizes the need to study the impact of non-ethanolic ingredients of alcoholic beverages on host health.

Funder

Department of Biotechnology (DBT), Govt. of India

DST core research grant for PhD students

ST/SC Community Development Programme in IASST

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3