Impacts of Surface Characteristics and Dew Point on the Blue-Light (BL405) Inactivation of Viruses

Author:

Bernardy Castine1ORCID,Malley James1ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, College of Engineering & Physical Sciences, University of New Hampshire, Durham, NH 03824, USA

Abstract

The increased prevalence of multidrug-resistant organisms (MDROs), healthcare associated infections (HAIs), and the recent COVID-19 pandemic has caused the photoinactivation industry to explore alternative wavelengths. Blue light (BL405) has gained significant interest as it is much less harmful to the skin and eyes than traditional germicidal wavelengths; therefore, in theory, it can be used continuously with human exposure. At present, the viricidal effects of BL405 are largely unknown as the literature predominately addresses bacterial disinfection performed with this wavelength. This work provides novel findings to the industry, reporting on the virucidal effects of BL405 on surfaces. This research utilizes three surfaces: ceramic, PTFE, and stainless steel. The efficacy of BL405 inactivation varied by surface type, which was due to surface characteristics, such as the contact angle, porosity, zeta potential, and reflectivity. Additionally, the effect of the dew point on BL405 inactivation efficacy was determined. This research is the first to study the effects of the dew point on the virucidal effectiveness of BL405 surface inactivation. The effects of the dew point were significant for all surfaces and the control experiments. The high-dew-point conditions (18 °C) yielded higher levels of BL405 inactivation and viral degradation for the experiments and controls, respectively.

Funder

CoRE

UIC

Business and Industry Consortia

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3