Current Viewpoint on Female Urogenital Microbiome—The Cause or the Consequence?

Author:

Čeprnja Marina1ORCID,Hadžić Edin2,Oros Damir2,Melvan Ena3,Starcevic Antonio2ORCID,Zucko Jurica2ORCID

Affiliation:

1. Biochemical Laboratory, Special Hospital Agram, Polyclinic Zagreb, 10000 Zagreb, Croatia

2. Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, Zagreb University, 10000 Zagreb, Croatia

3. Department of Biological Science, Faculty of Science, Macquarie University, Sydney, NSW 2109, Australia

Abstract

An increasing amount of evidence implies that native microbiota is a constituent part of a healthy urinary tract (UT), making it an ecosystem on its own. What is still not clear is whether the origin of the urinary microbial community is the indirect consequence of the more abundant gut microbiota or a more distinct separation exists between these two systems. Another area of uncertainty is the existence of a link between the shifts in UT microbial composition and both the onset and persistence of cystitis symptoms. Cystitis is one of the most common reasons for antimicrobial drugs prescriptions in primary and secondary care and an important contributor to the problem of antimicrobial resistance. Despite this fact, we still have trouble distinguishing whether the primary cause of the majority of cystitis cases is a single pathogen overgrowth or a systemic disorder affecting the entire urinary microbiota. There is an increasing trend in studies monitoring changes and dynamics of UT microbiota, but this field of research is still in its infancy. Using NGS and bioinformatics, it is possible to obtain microbiota taxonomic profiles directly from urine samples, which can provide a window into microbial diversity (or the lack of) underlying each patient’s cystitis symptoms. However, while microbiota refers to the living collection of microorganisms, an interchangeably used term microbiome referring to the genetic material of the microbiota is more often used in conjunction with sequencing data. It is this vast amount of sequences, which are truly “Big Data”, that allow us to create models that describe interactions between different species contributing to an UT ecosystem, when coupled with machine-learning techniques. Although in a simplified predator—prey form these multi-species interaction models have the potential to further validate or disprove current beliefs; whether it is the presence or the absence of particular key players in a UT microbial ecosystem, the exact cause or consequence of the otherwise unknown etiology in the majority of cystitis cases. These insights might prove to be vital in our ongoing struggle against pathogen resistance and offer us new and promising clinical markers.

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3