The Halotolerant Rhizobacterium—Pseudomonas koreensis MU2 Enhances Inorganic Silicon and Phosphorus Use Efficiency and Augments Salt Stress Tolerance in Soybean (Glycine max L.)

Author:

Adhikari ArjunORCID,Khan Muhammad Aaqil,Lee Ko-Eun,Kang Sang-Mo,Dhungana Sanjeev KumarORCID,Bhusal Narayan,Lee In-Jung

Abstract

Optimizing nutrient usage in plants is vital for a sustainable yield under biotic and abiotic stresses. Since silicon and phosphorus are considered key elements for plant growth, this study assessed the efficient supplementation strategy of silicon and phosphorus in soybean plants under salt stress through inoculation using the rhizospheric strain—Pseudomonas koreensis MU2. The screening analysis of MU2 showed its high salt-tolerant potential, which solubilizes both silicate and phosphate. The isolate, MU2 produced gibberellic acid (GA1, GA3) and organic acids (malic acid, citric acid, acetic acid, and tartaric acid) in pure culture under both normal and salt-stressed conditions. The combined application of MU2, silicon, and phosphorus significantly improved silicon and phosphorus uptake, reduced Na+ ion influx by 70%, and enhanced K+ uptake by 46% in the shoots of soybean plants grown under salt-stress conditions. MU2 inoculation upregulated the salt-resistant genes GmST1, GmSALT3, and GmAKT2, which significantly reduced the endogenous hormones abscisic acid and jasmonic acid while, it enhanced the salicylic acid content of soybean. In addition, MU2 inoculation strengthened the host’s antioxidant system through the reduction of lipid peroxidation and proline while, it enhanced the reduced glutathione content. Moreover, MU2 inoculation promoted root and shoot length, plant biomass, and the chlorophyll content of soybean plants. These findings suggest that MU2 could be a potential biofertilizer catalyst for the amplification of the use efficiency of silicon and phosphorus fertilizers to mitigate salt stress.

Publisher

MDPI AG

Subject

Virology,Microbiology (medical),Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3