GNSS and Sentinel-1 InSAR Integrated Long-Term Subsidence Monitoring in Quetta and Mastung Districts, Balochistan, Pakistan

Author:

Kakar Najeebullah12ORCID,Zhao Chaoying13ORCID,Li Guangrong1,Zhao Haolin1

Affiliation:

1. School of Geological Engineering and Geomatics, Chang’an University, Xi’an 710054, China

2. Department of Geology, University of Balochistan, Quetta 08770, Pakistan

3. Key Laboratory of Western China’s Mineral Resource and Geological Engineering, Ministry of Education, Xi’an 710054, China

Abstract

Land subsidence (LS) is a global phenomenon that has affected several urban centres around the world such as Jakarta (Indonesia), Mexico City (Mexico), Xi’an (China), and Iron County (US). It has mainly been attributed to anthropogenic activities such as groundwater exploitation, especially in unconsolidated aquifer systems rich in highly compressible clay and silt. The platy clay minerals rearrange into horizontal stacks after dewatering, leading to a volume change due to overburden. In this study, land subsidence is investigated in the Quetta and Mastung districts, Balochistan, Pakistan, by employing Small Baseline Subset (SBAS) Interferometric Synthetic Aperture Radar (InSAR), Global Navigation Satellite System (GNSS), and groundwater level (GWL) variations. This study represents the first attempt in Pakistan to measure the long-term land subsidence by fusing GNSS and InSAR data for improved validity. InSAR data from the Sentinel-1 satellite in the Ascending (195 scenes) and Descending (183 scenes) tracks were used to analyse LS from December 2015 to December 2022. High-accuracy Trimble NetRS GNSS receivers were used in five locations from October 2006 to December 2022. An average subsidence ranging from 3.2 cm/y to 16 cm/y was recorded in the valley mainly due to the GWL decline and clay-rich sediments, which are prone to compaction due to dewatering. An accumulative LS of 2 m was recorded by the permanent GNSS station in central Quetta from October 2008 to January 2023 (14.2 years). An acceleration in the subsidence from 12 cm/y to 16.6 cm/y after 2016 was recorded by the continuous GNSS. Additionally, the InSAR and GNSS values were compared for validation, resulting in a good correlation between both techniques. A GWL decline ranging from 1.7 m to 6 m was recorded by the piezometers in Quetta during the period 1987–2022. Large- and small-scale fissures were observed in the study area during the surveys. These fissures are responsible for damage to the city’s infrastructure and aquifer contamination. The subsidence profile also agrees with the subsurface lithology. Our assessment concludes that Quetta may be the fastest-sinking metropolitan city in Pakistan. The overexploitation of groundwater and the population explosion may be the main contributing factors for the land subsidence.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3