Earlier Spring-Summer Phenology and Higher Photosynthetic Peak Altered the Seasonal Patterns of Vegetation Productivity in Alpine Ecosystems

Author:

Yang Fan1,Liu Chao1ORCID,Chen Qianqian1,Lai Jianbin2,Liu Tiegang1

Affiliation:

1. State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource and Hydropower, Sichuan University, Chengdu 610065, China

2. Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

Abstract

Carbon uptake of vegetation is controlled by phenology and photosynthetic carbon uptake capacity. However, our knowledge of the seasonal responses of vegetation productivity to phenological and physiological changes in alpine ecosystems is still weak. In this study, we quantified the spatio-temporal variations of vegetation phenology and gross primary productivity (GPP) across the source region of the Yellow River (SRYR) by analyzing MODIS-derived vegetation phenology and GPP from 2001 to 2019, and explored how vegetation phenology and maximum carbon uptake capacity (GPPmax) affected seasonal GPP over the region. Our results showed that the SRYR experienced significantly advanced trends (p < 0.05) for both start (SOS) and peak (POS) of the growing season from 2001 to 2019. Spring GPP (GPPspr) had a significantly increasing trend (p < 0.01), and the earlier SOS had obvious positive effects on GPPspr. Summer GPP (GPPsum) was significantly and negatively correlated to POS (p < 0.05). In addition, GPPmax had a significant and positive correlation with GPPsum and GPPann (p < 0.01), respectively. It was found that an earlier spring-summer phenology and higher photosynthetic peak enhanced the photosynthetic efficiency of vegetation in spring and summer and altered the seasonal patterns of vegetation productivity in the SRYR under warming and wetting climates. This study indicated that not only spring and autumn phenology but also summer phenology and maximum carbon uptake capacity should be regarded as crucial indicators regulating the carbon uptake process in alpine ecosystems. This research provides important information about how changes in phenology affect vegetation productivity in alpine ecosystems under global climate warming.

Funder

National Natural Sciences Foundation of China

Publisher

MDPI AG

Reference86 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3