Effect of EGCG Extracted from Green Tea against Largemouth Bass Virus Infection

Author:

Cheng Yuan,Liu Mingzhu,Yu Qing,Huang Shuaishuai,Han Shuyu,Shi Jingu,Wei Hongling,Zou Jianwei,Li Pengfei

Abstract

(1) Background: Largemouth bass virus (LMBV) is a major viral pathogen in largemouth bass (Micropterus salmoides) aquaculture that often causes high mortality and heavy economic losses, thus developing treatments to combat this pathogen is of great commercial importance. Green tea is a well-known medicinal plant that contains active ingredients with antiviral, antibacterial, and other biological activities. The goals of this study were to explore the effect and mechanism of green tea source compounds on LMBV and provide data to serve as the basis for the screening of targeted drugs in the future. In this study, we evaluated the effects of the main component of green tea, epigallocatechin-3-gallate (EGCG), against LMBV infection. (2) Methods: The safe working concentration of EGCG was identified by cell viability detection and light microscopy. The antiviral activity and mechanism of action of EGCG against LMBV infection were evaluated with light microscopy, an aptamer 6-carboxy-fluorescein-based fluorescent molecular probe, and reverse transcription quantitative PCR. (3) Results: The safe working concentration of EGCG was ≤10 μg/mL. EGCG showed significant anti-LMBV infection activity in a concentration-dependent manner, and it also destroyed the structure of virus particles. EGCG impacted the binding of virus particles to cell receptors and virus invasion into the host cells. Inhibitory effects of EGCG on LMBV particles, LMBV binding to the host-cell membrane, and LMBV invasion were 84.89%, 98.99%, and 95.23%, respectively. Meanwhile, the effects of EGCG subsequently were verified in vivo. The fatality rate of the LMBV + EGCG group was significantly lower than that of the LMBV group. (4) Conclusions: Our results suggest that EGCG has effective antiviral properties against LMBV and may be a candidate for the effective treatment and control of LMBV infections in largemouth bass aquaculture.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangxi

Publisher

MDPI AG

Subject

Virology,Infectious Diseases

Reference51 articles.

1. Global diversity and genetic landscape of natural populations and hatchery stocks of largemouth bass micropterus salmoides across American and Asian regions;Wang;Sci. Rep.,2019

2. Huang, Y.M. (2022). Antiviral Effect and Mechanism of Metformin against SGIV and Artemisinin and Their Derivatives against LMBV, Guangxi University for Nationalities.

3. Zhang, X.L., Cui, L., Li, S., Liu, X., Han, X., and Jiang, K. (2021). China Fishery Statistical Yearbook, China Agricultural Press.

4. Involvement of the PI3K and ERK signaling pathways in largemouth bass virus-induced apoptosis and viral replication;Huang;Fish Shellfish Immunol.,2014

5. Protective immunity of largemouth bass immunized with immersed DNA vaccine against largemouth bass ulcerative syndrome virus;Jia;Fish Shellfish Immunol.,2020

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3