Contribution of Nano-Zero-Valent Iron and Arbuscular Mycorrhizal Fungi to Phytoremediation of Heavy Metal-Contaminated Soil

Author:

Cheng Peng,Zhang Shuqi,Wang Quanlong,Feng Xueying,Zhang Shuwu,Sun Yuhuan,Wang FayuanORCID

Abstract

Soil pollution with heavy metals has attracted increasing concern, which calls for the development of new remediation strategies. The combination of physical, chemical, and biological techniques can achieve more efficient remediation. However, few studies have focused on whether nanomaterials and beneficial microbes can be jointly used to facilitate phytoremediation. Therefore, we studied the role of nano-zero-valent iron (nZVI) and arbuscular mycorrhizal (AM) fungi in the phytoremediation of an acidic soil polluted with Cd, Pb and Zn, using sweet sorghum. X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), and mapping analyses were conducted to explore the mechanisms of metal immobilization by nZVI. The results showed that although both bare nZVI (B-nZVI) and starch-stabilized nZVI (S-nZVI) inhibited root mycorrhizal colonization, Acaulospora mellea ZZ successfully colonized the plant roots. AM inoculation significantly reduced the concentrations of DTPA-Cd, -Pb, and -Zn in soil, and the concentrations of Cd, Pb, and Zn in plants, indicating that AM fungi substantially facilitated heavy metal immobilization. Both B-nZVI and S-nZVI, ranging from 50 mg/kg to 1000 mg/kg, did not impede plant growth, and generally enhanced the phytoextraction of heavy metals. XRD, EDS and mapping analyses showed that S-nZVI was more susceptible to oxidation than B-nZVI, and thus had more effective immobilization effects on heavy metals. Low concentrations of nZVI (e.g., 100 mg/kg) and AM inoculation had synergistic effects on heavy metal immobilization, reducing the concentrations of Pb and Cd in roots and enhancing root Zn accumulation. In conclusion, our results showed that AM inoculation was effective in immobilizing heavy metals, whereas nZVI had a low phytotoxicity, and they could jointly contribute to the phytoremediation of heavy metal-contaminated soils with sweet sorghum.

Funder

Special Funds for the Science and Technology Program of Public Wellbeing

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3