Detection of α-Galactosidase A Reaction in Samples Extracted from Dried Blood Spots Using Ion-Sensitive Field Effect Transistors

Author:

Kuznetsov Alexander1ORCID,Sheshil Andrey1ORCID,Smolin Eugene1,Grudtsov Vitaliy1ORCID,Ryazantsev Dmitriy1,Shustinskiy Mark1ORCID,Tikhonova Tatiana1,Kitiashvili Irakli2,Vechorko Valerii2,Komarova Natalia1ORCID

Affiliation:

1. Institute of Nanotechnology of Microelectronics of the Russian Academy of Sciences, 32A Leninsky Prospekt, Moscow 119334, Russia

2. Municipal Clinical Hospital No. 15 named after O.M. Filatov, 23 Veshnyakovskaya St., Moscow 111539, Russia

Abstract

Fabry disease is a lysosomal storage disorder caused by a significant decrease in the activity or absence of the enzyme α-galactosidase A. The diagnostics of Fabry disease during newborn screening are reasonable, due to the availability of enzyme replacement therapy. This paper presents an electrochemical method using complementary metal-oxide semiconductor (CMOS)-compatible ion-sensitive field effect transistors (ISFETs) with hafnium oxide-sensitive surfaces for the detection of α-galactosidase A activity in dried blood spot extracts. The capability of ISFETs to detect the reaction catalyzed by α-galactosidase A was demonstrated. The buffer composition was optimized to provide suitable conditions for both enzyme and ISFET performance. The use of ISFET structures as sensor elements allowed for the label-free detection of enzymatic reactions with melibiose, a natural substrate of α-galactosidase A, instead of a synthetic fluorogenic one. ISFET chips were packaged with printed circuit boards and microfluidic reaction chambers to enable long-term signal measurement using a custom device. The packaged sensors were demonstrated to discriminate between normal and inhibited GLA activity in dried blood spots extracts. The described method offers a promising solution for increasing the widespread distribution of newborn screening of Fabry disease.

Funder

Russian Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3