Small-Signal Modeling and Frequency Support Capacity Analysis of Power Load Considering Voltage Variation Effect

Author:

Zhou Tao12ORCID,Zheng Yuxin1,Wang Cheng1ORCID,Chen Lei2ORCID,Liu Bo3ORCID,Chen Zhong3

Affiliation:

1. School of Automation, Nanjing University of Science and Technology, Nanjing 210094, China

2. State Key Laboratory of Power System Operation and Control, Tsinghua University, Beijing 100084, China

3. School of Electrical Engineering, Southeast University, Nanjing 210096, China

Abstract

The frequency support capacity of power loads is essential for maintaining active power symmetry and balance between the generation and demand sides of power systems. As the proportion of renewable energy sources and power electronic equipment increases, the inertia on the power generation side decreases, highlighting the growing importance of frequency support on the load side. As it is generally believed that the active power balance of power systems determines the frequency stability, few studies have considered the effect of voltage variation on the frequency response dynamics. It is important to note that the node voltage keeps fluctuating throughout the frequency dynamic process, which affects the active power of loads and should not be neglected. Based on the aforementioned rationales, this paper endeavors to investigate the modeling of power load frequency response and analyze its support capability considering the voltage variation effect. This paper initially establishes the small-signal model of dynamic load under frequency dynamics, derives the transfer function relating active power to system frequency deviation, and subsequently develops its frequency response model. Subsequently, commencing with the ZIP model of static load, the power fluctuation of load nodes is derived from the influence of preceding nodes, and the frequency response model of the static load is formulated and its frequency support capacity is scrutinized. Based on this foundation, a comprehensive aggregation model of the complex load is constructed, and its frequency support capability is assessed using actual data. Finally, the proposed model and analysis results are validated through simulation, confirming their correctness and effectiveness.

Funder

State Key Laboratory of Power System Operation and Control

Natural Science Foundation of Jiangsu Province

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3