Serotonin Transporter (SERT) Expression Modulates the Composition of the Western-Diet-Induced Microbiota in Aged Female Mice

Author:

Bloemendaal Mirjam1,Veniaminova Ekaterina2,Anthony Daniel C.3ORCID,Gorlova Anna2,Vlaming Priscilla1,Khairetdinova Adel2ORCID,Cespuglio Raymond24,Lesch Klaus Peter56,Arias Vasquez Alejandro1,Strekalova Tatyana56ORCID

Affiliation:

1. Departments of Psychiatry & Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands

2. Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine and Department of Normal Physiology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia

3. Department of Pharmacology, Oxford University, Oxford OX1 3QT, UK

4. Neuroscience Research Center of Lyon, Claude-Bernard Lyon-1 University, 69500 Bron, France

5. Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, 97080 Würzburg, Germany

6. Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, 6229 HX Maastricht, The Netherlands

Abstract

Background. The serotonin transporter (SERT), highly expressed in the gut and brain, is implicated in metabolic processes. A genetic variant of the upstream regulatory region of the SLC6A4 gene encoding SERT, the so-called short (s) allele, in comparison with the long (l) allele, results in the decreased function of this transporter, altered serotonergic regulation, an increased risk of psychiatric pathology and type-2 diabetes and obesity, especially in older women. Aged female mice with the complete (Sert−/−: KO) or partial (Sert+/−: HET) loss of SERT exhibit more pronounced negative effects following their exposure to a Western diet in comparison to wild-type (Sert+/+: WT) animals. Aims. We hypothesized that these effects might be mediated by an altered gut microbiota, which has been shown to influence serotonin metabolism. We performed V4 16S rRNA sequencing of the gut microbiota in 12-month-old WT, KO and HET female mice that were housed on a control or Western diet for three weeks. Results. The relative abundance of 11 genera was increased, and the abundance of 6 genera was decreased in the Western-diet-housed mice compared to the controls. There were correlations between the abundance of Streptococcus and Ruminococcaceae_UCG-014 and the expression of the pro-inflammatory marker Toll-like-Receptor 4 (Tlr4) in the dorsal raphe, as well as the expression of the mitochondrial activity marker perixome-proliferator-activated-receptor-cofactor-1b (Ppargc1b) in the prefrontal cortex. Although there was no significant impact of genotype on the microbiota in animals fed with the Control diet, there were significant interactions between diet and genotype. Following FDR correction, the Western diet increased the relative abundance of Intestinimonas and Atopostipes in the KO animals, which was not observed in the other groups. Erysipelatoclostridium abundance was increased by the Western diet in the WT group but not in HET or KO animals. Conclusions. The enhanced effects of a challenge with a Western diet in SERT-deficient mice include the altered representation of several gut genera, such as Intestinimonas, Atopostipes and Erysipelatoclostridium, which are also implicated in serotonergic and lipid metabolism. The manipulation of these genera may prove useful in individuals with the short SERT allele.

Funder

Horizon 2020 Research and Innovation Programme

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3