Influence of Aortic Valve Stenosis and Wall Shear Stress on Platelets Function

Author:

Bańka Paweł1,Wybraniec Maciej1ORCID,Bochenek Tomasz1ORCID,Gruchlik Bartosz1,Burchacka Aleksandra1,Swinarew Andrzej23ORCID,Mizia-Stec Katarzyna1ORCID

Affiliation:

1. First Department of Cardiology, School of Medicine in Katowice, Medical University of Silesia, 40-635 Katowice, Poland

2. Faculty of Science and Technology, University of Silesia in Katowice, 40-007 Katowice, Poland

3. Department of Swimming and Water Rescue, Institute of Sport Science, The Jerzy Kukuczka Academy of Physical Education, 40-065 Katowice, Poland

Abstract

Aortic valve stenosis (AS) is a common heart valve disease in the elderly population, and its pathogenesis remains an interesting area of research. The degeneration of the aortic valve leaflets gradually progresses to valve sclerosis. The advanced phase is marked by the presence of extracellular fibrosis and calcification. Turbulent, accelerated blood flow generated by the stenotic valve causes excessive damage to the aortic wall. Elevated shear stress due to AS leads to the degradation of high-molecular weight multimers of von Willebrand factor, which may involve bleeding in the mucosal tissues. Conversely, elevated shear stress has been associated with the release of thrombin and the activation of platelets, even in individuals with acquired von Willebrand syndrome. Moreover, turbulent blood flow in the aorta may activate the endothelium and promote platelet adhesion and activation on the aortic valve surface. Platelets release a wide range of mediators, including lysophosphatidic acid, which have pro-osteogenic effects in AS. All of these interactions result in blood coagulation, fibrinolysis, and the hemostatic process. This review summarizes the current knowledge on high shear stress-induced hemostatic disorders, the influence of AS on platelets and antiplatelet therapy.

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3