A Unique mRNA Vaccine Elicits Protective Efficacy against the SARS-CoV-2 Omicron Variant and SARS-CoV

Author:

Guan Xiaoqing1,Verma Abhishek K.2,Wang Gang1,Roy Abhijeet1ORCID,Perlman Stanley23,Du Lanying1

Affiliation:

1. Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA

2. Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA

3. Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA

Abstract

The highly pathogenic coronaviruses SARS-CoV-2 and SARS-CoV have led to the COVID-19 pandemic and SARS outbreak, respectively. The receptor-binding domain (RBD) of the spike (S) protein of SARS-CoV-2, particularly the Omicron variant, has frequent mutations, resulting in the reduced efficiency of current COVID-19 vaccines against new variants. Here, we designed two lipid nanoparticle-encapsulated mRNA vaccines by deleting the mutant RBD of the SARS-CoV-2 Omicron variant (SARS2-S (RBD-del)) or by replacing this mutant RBD with the conserved and potent RBD of SARS-CoV (SARS2-S (SARS-RBD)). Both mRNA vaccines were stable at various temperatures for different time periods. Unlike SARS2-S (RBD-del) mRNA, SARS2-S (SARS-RBD) mRNA elicited effective T-cell responses and potent antibodies specific to both SARS-CoV-2 S and SARS-CoV RBD proteins. It induced strong neutralizing antibodies against pseudotyped SARS-CoV-2 and SARS-CoV infections and protected immunized mice from the challenge of the SARS-CoV-2 Omicron variant and SARS-CoV by significantly reducing the viral titers in the lungs after Omicron challenge and by completely preventing SARS-CoV-induced weight loss and death. SARS2-S (SARS-RBD)-immunized serum antibodies protected naïve mice from the SARS-CoV challenge, with its protective efficacy positively correlating with the neutralizing antibody titers. These findings indicate that this mRNA vaccine has the potential for development as an effective vaccine against current and future SARS-CoV-2 variants and SARS-CoV.

Funder

National Institutes of Health

Publisher

MDPI AG

Reference67 articles.

1. A pneumonia outbreak associated with a new coronavirus of probable bat origin;Zhou;Nature,2020

2. World Health Organization (2024, April 28). Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/.

3. SARS—beginning to understand a new virus;Stadler;Nat. Rev. Microbiol.,2003

4. The SARS-CoV-2 pandemic: A syndemic perspective;Fronteira;One Health,2021

5. A novel coronavirus associated with severe acute respiratory syndrome;Ksiazek;N. Engl. J. Med.,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3