Exploring the Immunoprotective Potential of a Nanocarrier Immersion Vaccine Encoding Sip against Streptococcus Infection in Tilapia (Oreochromis niloticus)

Author:

Cao Ye123,Liu Jia23,Liu Gaoyang23,Du Hui23,Liu Tianqiang23ORCID,Wang Gaoxue23,Wang Qing1,Zhou Ya4,Wang Erlong23

Affiliation:

1. Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China

2. Northwest A&F University Shenzhen Research Institute, Shenzhen 518000, China

3. College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China

4. College of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing 404155, China

Abstract

Tilapia, as one of the fish widely cultured around the world, is suffering severe impact from the streptococcus disease with the deterioration of the breeding environment and the increasing of breeding density, which brings serious economic loss to tilapia farming. In this study, the surface immunogenic protein (Sip) of Streptococcus agalactiae (S. agalactiae) was selected as the potential candidate antigen and connected with bacterial nano cellulose (BNC) to construct the nanocarrier subunit vaccine (BNC-rSip), and the immersion immune effects against S. agalactiae and Streptococcus iniae (S. iniae) in Nile tilapia were evaluated on the basis of the serum antibody level, non-specific enzyme activity, the immune-related gene expression and relative percent survival (RPS). The results indicated that Sip possessed the expected immunogenicity according to the immunoinformatic analysis. Compared with the rSip group, BNC-rSip significantly induced serum antibody production and improved the innate immunity level of tilapia. After challenge, the RPS of BNC-rSip groups were 78.95% (S. agalactiae) and 67.86% (S. iniae), which were both higher than those of rSip groups,31.58% (S. agalactiae) and 35.71% (S. iniae), respectively. Our study indicated that BNC-rSip can induce protective immunity for tilapia through immersion immunization and may be an ideal candidate vaccine for controlling tilapia streptococcal disease.

Funder

the Opening Fund of Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs

the central government guide local science and technology development fund-Shenzhen Virtual University Park Free exploration basic research

Natural Science Basic Research Program of Shaanxi

Guangxi Natural Science Foundation Youth Fund Project

the project of science and technology research program of Chongqing Education Commission of China

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Drug Discovery,Pharmacology,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3