Immunization with Anaplasma centrale Msp2 HVRs Is Less Effective than the Live A. centrale Vaccine against Anaplasmosis

Author:

Falghoush Azeza123,Ku Pei-Shin1,Brayton Kelly A.1ORCID

Affiliation:

1. Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99164, USA

2. College of Sciences, Sirte University, Sirte P.O. Box 674, Libya

3. College of Medical Technology, Aljufra University, Hun P.O. Box 61602, Libya

Abstract

Bovine anaplasmosis, caused by Anaplasma marginale, is the most prevalent tick-transmitted pathogen of livestock globally. In many parts of the world, Anaplasma centrale, a related organism, is used as a live blood-borne vaccine as it causes either no or only a mild clinical disease. Anaplasma centrale does not prevent infection with A. marginale but does prevent acute disease. Anaplasma centrale is prohibited from being used in the U.S. due to the risk of transmitting emerging pathogens. Both of these organisms encode proteins known as major surface protein 2 (Msp2), which is the most immunodominant protein for the organism. Both organisms persist in their host by evading clearance, i.e., the adaptive immune response, by recombining the hypervariable region (HVR) of msp2 with pseudogene alleles. The study goal was to test whether the Msp2 HVRs encoded by A. centrale are a sufficient source of immune stimulation to provide the clinical protection exhibited by the blood-borne vaccine. Calves were inoculated with recombinantly expressed A. centrale HVRs. Control groups were inoculated with saponin or infected with the A. centrale live vaccine and compared with the test group. A Western blot analysis demonstrated that the HVR immunizations and A. centrale live vaccine stimulated an immune response. All animals in the study became infected upon challenge with A. marginale-infected ticks. The saponin-immunized control group had a high PPE (5.4%) and larger drops in PCVs (14.6%). As expected, the A. centrale-immunized animals were protected from acute disease with lower (0.6%) parasitemia and lower drops in PCV (8.6%). The HVR-immunized group had intermediate results that were not statistically significantly different from either the negative or positive controls. This suggests that the HVR immunogen does not fully recapitulate the protective capacity of the live vaccine.

Funder

BARD

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Drug Discovery,Pharmacology,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3