Meta-Data Analysis to Explore the Hub of the Hub-Genes That Influence SARS-CoV-2 Infections Highlighting Their Pathogenetic Processes and Drugs Repurposing

Author:

Mosharaf Md. Parvez,Kibria Md. Kaderi,Hossen Md. BayazidORCID,Islam Md. Ariful,Reza Md. Selim,Mahumud Rashidul Alam,Alam KhorshedORCID,Gow Jeff,Mollah Md. Nurul HaqueORCID

Abstract

The pandemic of SARS-CoV-2 infections is a severe threat to human life and the world economic condition. Although vaccination has reduced the outspread, but still the situation is not under control because of the instability of RNA sequence patterns of SARS-CoV-2, which requires effective drugs. Several studies have suggested that the SARS-CoV-2 infection causing hub differentially expressed genes (Hub-DEGs). However, we observed that there was not any common hub gene (Hub-DEGs) in our analyses. Therefore, it may be difficult to take a common treatment plan against SARS-CoV-2 infections globally. The goal of this study was to examine if more representative Hub-DEGs from published studies by means of hub of Hub-DEGs (hHub-DEGs) and associated potential candidate drugs. In this study, we reviewed 41 articles on transcriptomic data analysis of SARS-CoV-2 and found 370 unique hub genes or studied genes in total. Then, we selected 14 more representative Hub-DEGs (AKT1, APP, CXCL8, EGFR, IL6, INS, JUN, MAPK1, STAT3, TNF, TP53, UBA52, UBC, VEGFA) as hHub-DEGs by their protein-protein interaction analysis. Their associated biological functional processes, transcriptional, and post-transcriptional regulatory factors. Then we detected hHub-DEGs guided top-ranked nine candidate drug agents (Digoxin, Avermectin, Simeprevir, Nelfinavir Mesylate, Proscillaridin, Linifanib, Withaferin, Amuvatinib, Atazanavir) by molecular docking and cross-validation for treatment of SARS-CoV-2 infections. Therefore, the findings of this study could be useful in formulating a common treatment plan against SARS-CoV-2 infections globally.

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Drug Discovery,Pharmacology,Immunology

Reference134 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3