MADE: A Computational Tool for Predicting Vaccine Effectiveness for the Influenza A(H3N2) Virus Adapted to Embryonated Eggs

Author:

Chen HuiORCID,Wang JunqiuORCID,Liu YunsongORCID,Ling Ivy Quek Ee,Shih Chih Chuan,Wu Dafei,Fu Zhiyan,Lee Raphael Tze ChuenORCID,Xu Miao,Chow Vincent T.ORCID,Maurer-Stroh SebastianORCID,Zhou Da,Liu Jianjun,Zhai Weiwei

Abstract

Seasonal Influenza H3N2 virus poses a great threat to public health, but its vaccine efficacy remains suboptimal. One critical step in influenza vaccine production is the viral passage in embryonated eggs. Recently, the strength of egg passage adaptation was found to be rapidly increasing with time driven by convergent evolution at a set of functionally important codons in the hemagglutinin (HA1). In this study, we aim to take advantage of the negative correlation between egg passage adaptation and vaccine effectiveness (VE) and develop a computational tool for selecting the best candidate vaccine virus (CVV) for vaccine production. Using a probabilistic approach known as mutational mapping, we characterized the pattern of sequence evolution driven by egg passage adaptation and developed a new metric known as the adaptive distance (AD) which measures the overall strength of egg passage adaptation. We found that AD is negatively correlated with the influenza H3N2 vaccine effectiveness (VE) and ~75% of the variability in VE can be explained by AD. Based on these findings, we developed a computational package that can Measure the Adaptive Distance and predict vaccine Effectiveness (MADE). MADE provides a powerful tool for the community to calibrate the effect of egg passage adaptation and select more reliable strains with minimum egg-passaged changes as the seasonal A/H3N2 influenza vaccine.

Funder

NMRC Singapore

National Science Foundation of China

National Key R&D program of China

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Drug Discovery,Pharmacology,Immunology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3