Predicting Cyanobacterial Blooms Using Hyperspectral Images in a Regulated River

Author:

Ahn Jung MinORCID,Kim Byungik,Jong JaehunORCID,Nam Gibeom,Park Lan Joo,Park Sanghyun,Kang Taegu,Lee Jae-Kwan,Kim JungwookORCID

Abstract

Process-based modeling for predicting harmful cyanobacteria is affected by a variety of factors, including the initial conditions, boundary conditions (tributary inflows and atmosphere), and mechanisms related to cyanobacteria growth and death. While the initial conditions do not significantly affect long-term predictions, the initial cyanobacterial distribution in water is particularly important for short-term predictions. Point-based observation data have typically been used for cyanobacteria prediction of initial conditions. These initial conditions are determined through the linear interpolation of point-based observation data and may differ from the actual cyanobacteria distribution. This study presents an optimal method of applying hyperspectral images to establish the Environmental Fluid Dynamics Code-National Institute of Environment Research (EFDC-NIER) model initial conditions. Utilizing hyperspectral images to determine the EFDC-NIER model initial conditions involves four steps that are performed sequentially and automated in MATLAB. The EFDC-NIER model is established using three grid resolution cases for the Changnyeong-Haman weir section of the Nakdong River Basin, where Microcystis dominates during the summer (July to September). The effects of grid resolution on (1) water quality modeling and (2) initial conditions determined using cumulative distribution functions are evaluated. Additionally, the differences in Microcystis values are compared when applying initial conditions using hyperspectral images and point-based evaluation data. Hyperspectral images allow detailed initial conditions to be applied in the EFDC-NIER model based on the plane-unit cyanobacterial information observed in grids, which can reduce uncertainties in water quality (cyanobacteria) modeling.

Funder

National Institute of Environmental Research

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3