Highly Sensitive Fluorescence Detection of Three Organophosphorus Pesticides Based on Highly Bright DNA-Templated Silver Nanoclusters

Author:

Li Guowen12,Huang Xiufang12,Peng Chifang123ORCID,Sun Fengxia4

Affiliation:

1. State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China

2. School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China

3. International Joint Laboratory on Food Safety, Jiangnan University, Lihu Road 1800, Wuxi 214122, China

4. School of Food Science and Technology, Shihezi University, Shihezi 832000, China

Abstract

It is still challenging to achieve simultaneous and sensitive detection of multiple organophosphorus pesticides (OPs). Herein, we optimized the ssDNA templates for the synthesis of silver nanoclusters (Ag NCs). For the first time, we found that the fluorescence intensity of T base-extended DNA-templated Ag NCs was over three times higher than the original C-riched DNA-templated Ag NCs. Moreover, a “turn-off” fluorescence sensor based on the brightest DNA-Ag NCs was constructed for the sensitive detection of dimethoate, ethion and phorate. Under strong alkaline conditions, the P-S bonds in three pesticides were broken, and the corresponding hydrolysates were obtained. The sulfhydryl groups in the hydrolyzed products formed Ag-S bonds with the silver atoms on the surface of Ag NCs, which resulted in the aggregation of Ag NCs, following the fluorescence quenching. The fluorescence sensor showed that the linear ranges were 0.1–4 ng/mL for dimethoate with a limit of detection (LOD) of 0.05 ng/mL, 0.3–2 µg/mL for ethion with a LOD of 30 ng/mL, and 0.03–0.25 µg/mL for phorate with a LOD of 3 ng/mL. Moreover, the developed method was successfully applied to the detection of dimethoate, ethion and phorate in lake water samples, indicating a potential application in OP detection.

Funder

National Key Research and Development Program

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3