Interactions of Amino Group Functionalized Tetraphenylvinyl and DNA: A Label-Free “On-Off-On” Fluorescent Aptamer Sensor toward Ampicillin

Author:

Geng Weifu1,Feng Yan2,Chen Yu2,Zhang Xin1,Zhang Haoyi2,Yang Fanfan2,Wang Xiuzhong12ORCID

Affiliation:

1. College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China

2. College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China

Abstract

As a type of aggregation-induced emission (AIE) fluorescent probe, tetraphenylvinyl (TPE) or its derivatives are widely used in chemical imaging, biosensing and medical diagnosis. However, most studies have focused on molecular modification and functionalization of AIE to enhance the fluorescence emission intensity. There are few studies on the interaction between aggregation-induced emission luminogens (AIEgens) and nucleic acids, which was investigated in this paper. Experimental results showed the formation of a complex of AIE/DNA, leading to the quenching of the fluorescence of AIE molecules. Fluorescent test experiments with different temperatures proved that the quenching type was static quenching. The quenching constants, binding constants and thermodynamic parameters demonstrated that electrostatic and hydrophobic interactions promoted the binding process. Then, a label-free “on-off-on” fluorescent aptamer sensor for the detection of ampicillin (AMP) was constructed based on the interaction between the AIE probe and the aptamer of AMP. Linear range of the sensor is 0.2–10 nM with a limit of detection 0.06 nM. This fluorescent sensor was applied to detect AMP in real samples.

Funder

the National Innovation Training Program for College Students

Youth Innovation Team Project for Talent Introduction and Cultivation in Universities of Shandong Province

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3