Spatial Distribution of PM2.5 Mass and Number Concentrations in Paris (France) from the Pollutrack Network of Mobile Sensors during 2018–2022

Author:

Renard Jean-Baptiste1,Poincelet Eric2,Annesi-Maesano Isabella3ORCID,Surcin Jérémy2

Affiliation:

1. LPC2E-CNRS, 3A Avenue de la Recherche Scientifique, CEDEX 2, F-45071 Orléans, France

2. Pollutrack, 5 rue Lespagnol, F-75020 Paris, France

3. Institute Desbrest of Epidemiology and Public Health, Allergic and Respiratory Diseases Department, Montpellier University Hospital and INSERM, Montpellier, IDESP IURC, 641 Avenue du Doyen Gaston Giraud, F-34093 Montpellier, France

Abstract

The presence of particulate matter smaller than 2.5 µm in diameter (PM2.5) in ambient air has a direct pejorative effect on human health. It is thus necessary to monitor the urban PM2.5 values with high spatial resolution to better evaluate the different exposure levels that the population encounters daily. The Pollutrack network of optical mobile particle counters on the roofs of hundreds of vehicles in Paris was used to produce maps with a 1 km2 resolution (108 squares to cover the Paris surface). The study was conducted during the 2018–2022 period, showing temporal variability due to different weather conditions. When averaging all the data, the highest air pollution was found along the Paris motorway ring. Also, the mean mass concentrations of PM2.5 pollution increased from southwest to northeast, due to the typology of the city, with the presence of canyon streets, and perhaps due to the production of secondary aerosols during the transport of airborne pollutants by the dominant winds. The number of days above the new daily threshold of 15 µg.m−3 recommended by the WHO in September 2021 varies from 3.5 to 7 months per year depending on the location in Paris. Pollutrack sensors also provide the number concentrations for particles greater than 0.5 µm. Using number concentrations of very fine particles instead of mass concentrations corresponding to the dry residue of PM2.5 is more representative of the pollutants citizens actually inhale. Some recommendations for the calibration of the sensors used to provide such number concentrations are given. Finally, the consequences of such pollution on human health are discussed.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3