Aging-Related Changes in Expression and Function of Glutamate Transporters in Rat Spinal Cord Astrocytes

Author:

Sharan Shiksha12,Tewari Bhanu Prakash13ORCID,Joshi Preeti G.1

Affiliation:

1. Department of Biophysics, National Institute of Mental Health and Neurosciences, Hosur Main Road, Bangalore 560029, India

2. Department of Psychiatry, National Institute of Mental Health and Neurosciences, Hosur Main Road, Bangalore 560029, India

3. Department of Neuroscience, University of Virginia, Charlottesville, VA 22903, USA

Abstract

Astrocytes make up the predominant cell population among glial cells in the mammalian brain, and they play a vital role in ensuring its optimal functioning. They promote neuronal health and survival and protect neurons from glutamate-induced excitotoxicity. In the spinal cord’s dorsal horn (DH) and ventral horn (VH) regions, astrocytes serve crucial roles. Notably, VH motor neurons exhibit a heightened sensitivity to glutamate-induced damage. It is posited that this selective sensitivity could be related to their localized presence within the VH, where astrocytes possess a distinct set of mechanisms for managing glutamate. As organisms age, the risk of damage from glutamate increases, indicating a potential decline in the efficiency of astrocytic glutamate regulation. Our research involved an analysis of astrocytic structure, glutamate transporter levels, and glutamate uptake capabilities within the DH and VH through immunohistochemical methods, protein analysis via Western blot, and patch-clamp studies in electrophysiology. The investigations revealed a decrease in both the number and coverage of astroglia in the spinal cord, more so within the VH as aging progressed. Notably, levels of the excitatory amino acid transporters 1 and 2 (EAAT1 and EAAT2) also decreased with age, particularly within the VH. Patch-clamp analyses of astrocytes from both spinal regions confirmed a significant reduction in glutamate uptake activity as age advanced, indicating an age-related impairment in glutamate processing. The findings indicate aging leads to distinct changes in DH and VH astrocytes, impairing their glutamate management abilities, which could contribute significantly to the development of late-onset neurodegenerative conditions.

Funder

Department of Science and Technology, New Delhi, India

Department of Science and Technology, Government of India

Publisher

MDPI AG

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3