Analysis of Immunophenotypic Changes during Ex Vivo Human Erythropoiesis and Its Application in the Study of Normal and Defective Erythropoiesis

Author:

Katiyar Shobhita1ORCID,Shah Arunim1ORCID,Rahman Khaliqur2,Tripathy Naresh Kumar2ORCID,Kashyap Rajesh2ORCID,Nityanand Soniya2,Chaturvedi Chandra Prakash1ORCID

Affiliation:

1. Stem Cell Research Center, Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India

2. Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India

Abstract

Erythropoiesis is a highly regulated process and undergoes several genotypic and phenotypic changes during differentiation. The phenotypic changes can be evaluated using a combination of cell surface markers expressed at different cellular stages of erythropoiesis using FACS. However, limited studies are available on the in-depth phenotypic characterization of progenitors from human adult hematopoietic stem and progenitor cells (HSPCs) to red blood cells. Therefore, using a set of designed marker panels, in the current study we have kinetically characterized the hematopoietic, erythroid progenitors, and terminally differentiated erythroblasts ex vivo. Furthermore, the progenitor stages were explored for expression of CD117, CD31, CD41a, CD133, and CD45, along with known key markers CD36, CD71, CD105, and GPA. Additionally, we used these marker panels to study the stage-specific phenotypic changes regulated by the epigenetic regulator; Nuclear receptor binding SET Domain protein 1 (NSD1) during erythropoiesis and to study ineffective erythropoiesis in myelodysplastic syndrome (MDS) and pure red cell aplasia (PRCA) patients. Our immunophenotyping strategy can be used to sort and study erythroid-primed hematopoietic and erythroid precursors at specified time points and to study diseases resulting from erythroid dyspoiesis. Overall, the current study explores the in-depth kinetics of phenotypic changes occurring during human erythropoiesis and applies this strategy to study normal and defective erythropoiesis.

Funder

Wellcome Trust DBT India Alliance

Indian Council of Medical Research

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3