Significance of Catecholamine Biosynthetic/Metabolic Pathway in SARS-CoV-2 Infection and COVID-19 Severity

Author:

Mpekoulis George,Kalliampakou Katerina I.,Milona Raphaela S.,Lagou Despoina,Ioannidis AnastasiosORCID,Jahaj EdisonORCID,Chasapis Christos T.,Kefallinos Dionysis,Karakasiliotis IoannisORCID,Kotanidou AnastasiaORCID,Chatzipanagiotou StylianosORCID,Vassilacopoulou Dido,Vassiliou Alice G.ORCID,Angelakis Emmanouil,Vassilaki NikiORCID

Abstract

The SARS-CoV-2 infection was previously associated with the expression of the dopamine biosynthetic enzyme L-Dopa decarboxylase (DDC). Specifically, a negative correlation was detected between DDC mRNA and SARS-CoV-2 RNA levels in in vitro infected epithelial cells and the nasopharyngeal tissue of COVID-19 patients with mild/no symptoms. However, DDC, among other genes related to both DDC expression and SARS-CoV-2-infection (ACE2, dACE2, EPO), was upregulated in these patients, possibly attributed to an orchestrated host antiviral response. Herein, by comparing DDC expression in the nasopharyngeal swab samples of severe/critical to mild COVID-19 cases, we showed a 20 mean-fold reduction, highlighting the importance of the expression of this gene as a potential marker of COVID-19 severity. Moreover, we identified an association of SARS-CoV-2 infection with the expression of key catecholamine biosynthesis/metabolism-related genes, in whole blood samples from hospitalized patients and in cultured cells. Specifically, viral infection downregulated the biosynthetic part of the dopamine pathway (reduction in DDC expression up to 7.5 mean-fold), while enhanced the catabolizing part (increase in monoamine oxidases A and B expression up to 15 and 10 mean-fold, respectively) in vivo, irrespectively of the presence of comorbidities. In accordance, dopamine levels in the sera of severe cases were reduced (up to 3.8 mean-fold). Additionally, a moderate positive correlation between DDC and MAOA mRNA levels (r = 0.527, p < 00001) in the blood was identified upon SARS-CoV-2-infection. These observations were consistent to the gene expression data from SARS-CoV-2-infected Vero E6 and A549 epithelial cells. Furthermore, L-Dopa or dopamine treatment of infected cells attenuated the virus-derived cytopathic effect by 55% and 59%, respectively. The SARS-CoV-2 mediated suppression of dopamine biosynthesis in cell culture was, at least in part, attributed to hypoxia-like conditions triggered by viral infection. These findings suggest that L-Dopa/dopamine intake may have a preventive or therapeutic value for COVID-19 patients.

Funder

Institut Pasteur

Hellenic Pasteur Institute

Publisher

MDPI AG

Subject

General Medicine

Reference108 articles.

1. World Health Organization (2022, June 01). Coronavirus Disease (COVID-19). Available online: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/question-and-answers-hub/q-a-detail/coronavirus-disease-covid-19.

2. The SARS-CoV-2 outbreak: What we know;Wu;Int. J. Infect. Dis.,2020

3. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China;Huang;Lancet,2020

4. Molecular mechanisms highlighting the potential role of COVID-19 in the development of neurodegenerative diseases;Rahmani;Physiol. Int.,2022

5. (2022, September 10). Clinical Spectrum of SARS-CoV-2 Infection, Available online: https://www.covid19treatmentguidelines.nih.gov/overview/clinical-spectrum/.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3