Molecular Spectroscopy Evidence of 1,3,5-Tris(4-carboxyphenyl)benzene Binding to DNA: Anticancer Potential along with the Comparative Binding Profile of Intercalation via Modeling Studies

Author:

Wani Tanveer A.1ORCID,Zargar Seema2ORCID

Affiliation:

1. Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia

2. Department of Biochemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11451, Saudi Arabia

Abstract

One of medicinal chemistry’s top priorities is the discovery of new molecules with anticancer potential. Compounds that interact with DNA are an intriguing family of chemotherapeutic medications used to treat cancer. Studies in this area have uncovered a plethora of potential anticancer medicines, such as groove binding, alkylating, and intercalator compounds. The anticancer activity of DNA intercalators (molecules that intercalate between DNA base pairs) has drawn special interest. The current study investigated the promising anticancer drug 1,3,5-Tris(4-carboxyphenyl)benzene (H3BTB) against breast and cervical cancer cell lines. In addition, 1,3,5-Tris(4-carboxyphenyl)benzene binds to DNA by groove binding. The binding of H3BTB to DNA was found to be significant which unwinds the DNA helix. Considerable electrostatic and non-electrostatic contributions were present in the binding’s free energy. The cytotoxic potential of H3BTB is effectively demonstrated by the computational study outcomes, which include molecular docking and molecular dynamics (MD) simulations. The minor groove binding for the H3BTB–DNA complex is supported by molecular docking research. This study will promote empirical investigation into the synthesis of metallic and non-metallic H3BTB derivatives and their potential use as bioactive molecules for the treatment of cancer.

Funder

Deputyship for Research and Innovation, Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3