Inflammatory Cell Dynamics after Murine Femoral Artery Wire Injury: A Multi-Parameter Flow Cytometry-Based Analysis

Author:

Pamulapati Vivek1,Cuda Carla M.2,Smith Tracy L.1,Jung Jonathan1ORCID,Xiong Liqun1,Swaminathan Suchitra2,Ho Karen J.1ORCID

Affiliation:

1. Division of Vascular Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA

2. Division of Rheumatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA

Abstract

An acute inflammatory response following arterial surgery for atherosclerosis, such as balloon angioplasty, stenting, and surgical bypass, is an important driver of neointimal hyperplasia after arterial injury, which leads to recurrent ischemia. However, a comprehensive understanding of the dynamics of the inflammatory infiltrate in the remodeling artery is difficult to attain due to the shortcomings of conventional methods such as immunofluorescence. We developed a 15-parameter flow cytometry method to quantitate leukocytes and 13 leukocyte subtypes in murine arteries at 4 time points after femoral artery wire injury. Live leukocyte numbers peaked at 7 days, which preceded the peak neointimal hyperplasia lesion at 28 days. Neutrophils were the most abundant early infiltrate, followed by monocytes and macrophages. Eosinophils were elevated after 1 day, while natural killer and dendritic cells gradually infiltrated over the first 7 days; all decreased between 7 and 14 days. Lymphocytes began accumulating at 3 days and peaked at 7 days. Immunofluorescence of arterial sections demonstrated similar temporal trends of CD45+ and F4/80+ cells. This method allows for the simultaneous quantitation of multiple leukocyte subtypes from small tissue samples of injured murine arteries and identifies the CD64+Tim4+ macrophage phenotype as being potentially important in the first 7 days post-injury.

Funder

National Heart, Lung and Blood Institute

National Institute of Allergy and Infectious Diseases

American College of Surgeons and Society for Vascular Surgery

American Heart Association

Rheumatology Research Foundation

Northwestern University Robert H. Lurie Cancer Center Flow Cytometry Facility

National Cancer Institute

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3