Complementary Cell Lines for Protease Gene-Deleted Single-Cycle Adenovirus Vectors

Author:

Elahi Seyyed Mehdy1ORCID,Nazemi-Moghaddam Nazila1,Guilbault Claire1,Simoneau Mélanie1,Gilbert Rénald12

Affiliation:

1. Department of Production Platforms & Analytics, National Research Council Canada, Building Montreal, Montreal, QC H4P 2R2, Canada

2. Department of Bioengineering, McGill University, Montreal, QC H3A 0E9, Canada

Abstract

To increase the safety of adenovirus vector (AdV)-based therapy without reducing its efficacy, a single-cycle adenovirus vector (SC-AdV) with a deletion in the protease gene (PS) was developed in order to be used as a substitute for the replication-competent adenovirus (RC-AdV). Since no infectious viral particles are assembled, there is no risk of viral shedding. The complementary cell lines for this developed AdV proved to be suboptimal for the production of viral particles and require the presence of fetal bovine serum (FBS) to grow. In the current study, we produced both stable pools and clones using adherent and suspension cells expressing the PS gene. The best adherent cell pool can be used in the early stages for the generation of protease-deleted adenovirus, plaque purification, and titration. Using this, we produced over 3400 infectious viral particles per cell. Additionally, the best suspension subclone that was cultured in the absence of FBS yielded over 4000 infectious viral particles per cell. Harvesting time, culture media, and concentration of the inducer for the best suspension subclone were further characterized. With these two types of stable cells (pool and subclone), we successfully improved the titer of protease-deleted adenovirus in adherent and suspension cultures and eliminated the need for FBS during the scale-up production. Eight lots of SC-AdV were produced in the best suspension subclone at a scale of 2 to 8.2 L. The viral and infectious particle titers were influenced by the virus backbone and expressed transgene.

Funder

National Research Council Canada

Publisher

MDPI AG

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3