Low Platinum-Content Electrocatalysts for Highly Sensitive Detection of Endogenously Released H2O2

Author:

Morais Ana,Rijo PatríciaORCID,Batanero BelenORCID,Nicolai MarisaORCID

Abstract

The commercial viability of electrochemical sensors requires high catalytic efficiency electrode materials. A sluggish reaction of the sensor’s primary target species will require a high overpotential and, consequently, an excessive load of catalyst material to be used. Therefore, it is essential to understand nanocatalysts’ fundamental structures and typical catalytic properties to choose the most efficient material according to the biosensor target species. Catalytic activities of Pt-based catalysts have been significantly improved over the decades. Thus, electrodes using platinum nanocatalysts have demonstrated high power densities, with Pt loading considerably reduced on the electrodes. The high surface-to-volume ratio, higher electron transfer rate, and the simple functionalisation process are the main reasons that transition metal NPs have gained much attention in constructing high-sensitivity sensors. This study has designed to describe and highlight the performances of the different Pt-based bimetallic nanoparticles and alloys as an enzyme-free catalytic material for the sensitive electrochemical detection of H2O2. The current analysis may provide a promising platform for the prospective construction of Pt-based electrodes and their affinity matrix.

Funder

Fundação para a Ciência e Tecnologia

Publisher

MDPI AG

Subject

Clinical Biochemistry,General Medicine,Analytical Chemistry,Biotechnology,Instrumentation,Biomedical Engineering,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advances in Non-Enzymatic electrochemical materials for H2O2 sensing;Journal of Electroanalytical Chemistry;2024-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3